Geopark Adventure
UNESCO Global Geopark -
Discover secrets going back millions of years

www.geopark-alb.de
A view to the future – by following a sustainable strategy in the extraction of raw materials we ensure that we treat nature in a responsible way. Our quarries provide habitats for endangered species of animals and plants.
The Swabian Alb -
a mysterious natural paradise

Its wide diversity leaves nothing to be desired. If you want to discover the exciting history of the Swabian Alb and its early residents, you have come to the right place. Nature enthusiasts and active holiday makers will not be disappointed either if they are in search of peace and quiet or would like to discover the Alb by bike or on foot. The steep Alb escarpment with its craggy rocks and the extensive Alb plateau captivate visitors with their austere but irresistible charm. Holidaymakers, day-trippers and locals are all agreed, regardless of their preferences, that the low mountain range between Stuttgart and Lake Constance offers unique and breathtakingly beautiful natural scenery. And the Alb also has one or two secrets up its sleeve.

The Swabian Alb natural paradise is the result of an eventful geological past. The story began around 200 million years ago with the Jurassic Sea and is still going on today, as can be seen by the recent landslide in Mössingen which changed the face of the Alb.

You see evidence of the past millions of year on the Swabian Alb wherever you go. It is famous for its significant fossil sites, has the largest number of caves anywhere in Germany and has a meteor crater and volcanic pipes. The oldest artworks created by humans were also found here in the caves of the Alb. So there is a lot to discover on the Swabian Alb and we invite you to join us on a journey through time as we embark on the „Geopark Adventure“.

In addition to the geological highlights, visitors will find many other ideas for day trips or leisure possibilities on the Swabian Alb. For information on the holiday region Swabian Alb, hiking, cycling, how to get there, accommodation etc., see www.schwaebische-alb.de, Tel. 07125 - 948106.

Ammonite from the Black Jurassic period in the Museum im Kräuterkasten

Hiking trail near Hohenzollern castle
The scenery of the Swabian Alb offers uniquely exciting natural insights into 200 million years of the Earth’s history. That is why it has been designated a National Geopark since 2002 and a European and Global Geopark under the auspices of UNESCO since 2005.

What is a Geopark?
A landscape is designated a geopark if it has a geological, archaeological, cultural, historical and ecological heritage of particular significance, rarity or beauty. The task of a geopark is to make this heritage into an experience for visitors and the population and to convey an awareness of the development and importance of the landscape.

UNESCO defines three overall objectives for a geopark: in addition to preserving the environment, action should be taken towards achieving sustained economic development and promoting better general education in the Earth sciences.

The Swabian Alb is unique! The world cultural mountain range has namely been accorded three awards. In addition to the Geopark, the World Cultural Heritage Site Limes on the Eastern Alb and the Biosphere Reserve Swabian Alb have also been included in the UNESCO list. The Biosphere Reserve is different from the Geopark in that it is a nature reserve and only covers part of the area represented by the Geopark. For further information, see www.ostalbkreis.de and www.biosphaerengebiet-alb.de

The Geopark Swabian Alb - geologically excellent!

The Geopark Swabian Alb is one of currently 70 certified European Geoparks. These geoparks collaborate in a European network to preserve and perpetuate the geological heritage of their regions. The European Geopark Network exists since 2000. All European Geoparks are UNESCO Global Geoparks in addition. Currently six of the 16 National Geoparks in Germany are UNESCO Global Geoparks. www.europeangeoparks.org

What is a Geopark?
A landscape is designated a geopark if it has a geological, archaeological, cultural, historical and ecological heritage of particular significance, rarity or beauty. The task of a geopark is to make this heritage into an experience for visitors and the population and to convey an awareness of the development and importance of the landscape.

UNESCO defines three overall objectives for a geopark: in addition to preserving the environment, action should be taken towards achieving sustained economic development and promoting better general education in the Earth sciences.

There are currently 16 National Geoparks in Germany, 70 European Geoparks in 23 countries and 127 Global Geoparks in 37 countries around the world.

The Swabian Alb is unique! The world cultural mountain range has namely been accorded three awards. In addition to the Geopark, the World Cultural Heritage Site Limes on the Eastern Alb and the Biosphere Reserve Swabian Alb have also been included in the UNESCO list. The Biosphere Reserve is different from the Geopark in that it is a nature reserve and only covers part of the area represented by the Geopark. For further information, see www.ostalbkreis.de and www.biosphaerengebiet-alb.de.

Guided tour, Wackersstein
Tiefenhöhle Laichingen (The Laichingen Pothole)
The Swabian Alb runs right across the south of Germany from the Hochrhein in the southwest to the Nördlinger Ries in the northeast. Where you now see mountains up to 1000 m in height forming the central part of the Jura mountain range stretching from Switzerland to Franconia, there used to be a tropical sea in primeval times. This sea ebbed and flowed and had coral reefs, extensive beaches, palm ferns and gingko trees. This is the beginning of the exciting story of the Swabian Alb which takes us back to the end of the Keuper period 200 million years ago.

The deposits of Black, Brown and White Jurassic (200 – 140 million years ago) date back to the period when the Alb region was still covered with seawater and it is these deposits which have mainly contributed to the formation of the Swabian Alb. The Alb has been a land mass since the end of the Jurassic. Its history continues to be turbulent however: erosion during the Cretaceous (140 - 65 million years ago), volcanic eruptions and the impact of a meteorite during the Tertiary (65 – 2.6 million years ago) have all contributed to the forming of the landscape. After that, the rain and groundwater eroded the limestone of the Jura. It dissolved the limestone and so created the region with the most caves in Germany. Some caves on the Alb were inhabited during the Ice Age and the oldest known artworks created by humans – dating back almost 40,000 years – have been found here in recent years.

But every period of the last 200 million years has its own stories to tell so we had best start at the beginning. We’ll start with the Keuper period...

Geopark Swabian Alb - experience the Earth’s history live

Quarry wall of White Jurassic rock, Nusplingen

The geography of the Swabian Alb can be now be experienced at first hand. Examples of exciting discovery tours:

• In the footsteps of the Stone Age hunters, take a break at the Bärenhöhle cave or make your own Stone Age tools at the Prehistoric Museum in Blaubeuren.

• At the Blautopf, one of the largest springs in Germany, retrace Mörike’s legend of the beautiful nymph named Lau.

• Follow the wildly romantic rocky canyon of the Danube valley breakthrough on foot, by bike, by canoe or by Naturpark-Express train.

For an overview and information on places to visit, infocentres and special geological features in the geopark, see page 25 onwards.

Quarry wall of White Jurassic rock, Nusplingen

Fossil hunting site, Ohmden

The geology of the Swabian Alb can be now be experienced at first hand. Examples of exciting discovery tours:

• In the footsteps of the Stone Age hunters, take a break at the Bärenhöhle cave or make your own Stone Age tools at the Prehistoric Museum in Blaubeuren.

• At the Blautopf, one of the largest springs in Germany, retrace Mörike’s legend of the beautiful nymph named Lau.

• Follow the wildly romantic rocky canyon of the Danube valley breakthrough on foot, by bike, by canoe or by Naturpark-Express train.

For an overview and information on places to visit, infocentres and special geological features in the geopark, see page 25 onwards.

The Kornbühl outlier with Salmending Chapel on the Alb plateau near Burladingen
It happened over 200 million years ago at the end of the Keuper period: the sea returned again and this time it was destined to stay a long, long time. Today we can still see evidence of this in a small Keuper layer, the so-called „Grenzbonebed“, which documents the exciting transition the terrestrial Keuper mainland to the Jurassic Sea. And with a bit of luck, you may find a shark’s tooth or even a reptile’s tooth.

Apart from occasional marine invasions, it was often as dry as a bone in the Keuper Period itself. This alternation between „water“ and „desert“ can still be seen in the deposits of the Alb foreland.

There is hardly any other rock succession that offers so much variety of shapes and colours than the Keuper period: red, blue, violet, black and green sandstone and clays create a magical array of colours. A variety of internationally significant fossil finds in the Swabian Alb area have shown us what creatures were living in the seas and subtropical landscapes of the Keuper period: amphibians, dinosaurs, lungfish and the worldwide oldest turtles. Among the plants, finds have included remains of horsetails and fern fronds.

Swabian Alb - geology at a glance

Keuper - from sea to land and back again

Keuper landscapes now cover large parts of the Alb foreland and can be seen for example in the Tübingen region or in Schönbuch natural park.
Black Jurassic - sun, sea and reptiles

In the area now referred to as the Swabian Alb in southern Germany, there used to be a large sea 200 million years ago – the Jurassic Sea. The whole of Europe – apart from a few islands – was flooded by this sea about 50 million years ago. It was tropically warm.

The marine deposits which evolved during this long period of time and which are the main building blocks of the Swabian Alb are subdivided into the Black, Brown and White Jurassic.

The deposits of the Black Jurassic Period can now be seen in the Alb foreland in front of the Alb escarpment. In the shale deposits of Holzmaden and Dotternhausen, you can find a large variety of fossilized ray-finned fish, agile, “modern” predators, the first true bony fishes, sharks, sturgeons and even a crossopterygian.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The most common Jurassic fossils are the belemnites, which are closely related to squids, and ammonites. For a geologist, the ammonites are the most important fossils of the Black Jurassic period. Every layer shows its own, quite specific type of ammonite.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.

As there was a lack of oxygen at the bottom of the sea of the southern German bay during the Black Jurassic period, particularly good conditions were created for the long-term preservation of fossils. The habitat of the marine reptiles, fish, sea urchins, ammonites and belemnites which we find in the Posidonia Shale, was the open sea. At that time, the coast was located near Regensburg, that is around 200 kilometres away.

The dolphin-like ichthyosaurs are the most frequently occurring and best researched reptiles of the Jurassic. Their external form can be perfectly reconstructed due to the occasional preservation of skin and body contours all round the skeleton. Discoveries of female animals still containing embryos in their bodies show that they did not lay eggs but gave birth to babies. The largest ones could grow up to 20 m length. The marine crocodiles of the Jurassic are morphologically similar to modern river crocodiles in India. Like these, they were agile fish hunters.

The most beautiful fossils of the Jurassic, however, are the sea lilies. Despite their appearance, they are not plants but animals related to starfish and sea urchins. They used their large coronas to filter plankton as food from the sea water. They mostly lived in large colonies together with mussels and were attached to driftwood. The largest colony worldwide at over 100 m² is displayed in the Prehistoric Museum Hauff in Holzmaden.
Brown Jurassic
the Alb and its feet of clay

At the time of the Brown Jurassic period, the area of the eastern Alb was nearer to the mainland than the western Alb. The different conditions under which sediments were deposited can still be seen in the landscape today. A first cuesta in the area around the central Alb was formed by the Donzdorf sandstones which used to be in great demand for building stones e.g. for the construction of the Ulm Minster. These sandstones are among those contributing to the formation of the so-called ferruginous sandstone. Iron ore deposits can be found here, washed out of the rivers of the neighbouring mainland. As these layers have an iron content of over 30%, they had been an interesting mining source. For example, about 30,000 tons of ore a month was excavated from the „Karl“ mine near Geislingen up to 1963.

Mining activities from the past can be experienced at first hand in the Visitor Mine „Tiefer Stollen“ near Aalen. Brown Jurassic iron ore was mined here from 1608 to 1939. The mine train takes visitors 400 m down into the 6 km-labyrinth of underground passages. However, the old mine now also has a medical function. With the help of so-called „speleotherapy“, that is by using the healing effects of the extremely pure air in the mines, it is possible to treat illnesses such as asthma, respiratory diseases and allergies.

Robert Gradmann described the Alb very aptly as a „colossus with feet of clay“ – for the massive steep slope of the Alb actually lies on the Omationt, the uppermost Brown Jurassic member which is prone to landslips. This is where part of the water from the karstified White Jurassic comes to the surface in the form of springs and due to its spring erosion, contributes significantly to the periodic landslides of parts of the Alb. When observing the landscape, it is usually quite easy to see the border between the Brown Jurassic (picturesque hills in the Alb foreland) and the White Jurassic (craggy Alb rise). We can also see the Brown Jurassic in the extensive meadow orchards at the edge of the Alb as this has always been the main use of the land.

Next to his two “brothers”, the older Black Jurassic and the younger White Jurassic whose fossil finds have made them world-famous, the inconspicuous “little brother”, Brown Jurassic, might easily be forgotten. And yet it has quite a lot to offer.

The Brown Jurassic stretches as a relatively thin band along the northern side of the Swabian Alb, between the flat Black Jurassic plain and the steep rise of the White Jurassic. Its brownish, mainly ferruginous sandstone gave it the distinguishing name of Brown Jurassic, in contrast to the dark oil shales of the Black Jurassic and the white compacted limestones of the White Jurassic. Compared to the Black or White Jurassic, the Brown Jurassic layers were deposited around 160 million years ago in a shallower sea which was nearer to the mainland and in particular much cooler. At a water temperature of only 13 to 18°C, it was simply too cold for corals and other tropical creatures. Nevertheless, a number of mussels and ammonites have been found, some of which have opalescent shells.

Visitor Mine “Tiefer Stollen”, Aalen

Robert Gradmann described the Alb very aptly as a „colossus with feet of clay“ – for the massive steep slope of the Alb actually lies on the Omationt, the uppermost Brown Jurassic member which is prone to landslips. This is where part of the water from the karstified White Jurassic comes to the surface in the form of springs and due to its spring erosion, contributes significantly to the periodic landslides of parts of the Alb. When observing the landscape, it is usually quite easy to see the border between the Brown Jurassic (picturesque hills in the Alb foreland) and the White Jurassic (craggy Alb rise). We can also see the Brown Jurassic in the extensive meadow orchards at the edge of the Alb as this has always been the main use of the land.
White Jurassic - seashores and juniper heaths

The Bahamas south of Stuttgart: a tropical sea with water temperatures of 19 to 23°C, coral reefs in the water, palm ferns and ginkgo trees on islands. A tourist’s paradise right on our doorstep? Not any longer, but 150 million years ago, during the White Jurassic period, a tropical sea existed where now the Swabian Alb is located.

Nowadays, if you look to the south from the Stuttgart television tower, you get a completely different picture. An escarpment of several hundred metres in height rises up from the foreland. This is what remains, as it were, of the tropical sea that once covered large areas of Europe. The layers of the Alb escarpment are composed of solidified sea mud and numerous remains of shells and calcareous secretions of sponges, algae and corals. Alternating with the limestones there are thin layers of marl, a succession related to rhythmic climate fluctuations. Together with the thin layers of marl, the limestone beds give the impression of stacked-up walls. This “well-bedded limestone” is so beautifully stacked in parts that an observer could easily doubt it is the result of nature and wonder if it may in fact be the work of man.

As there were so many limestone outcrops, this understandably encouraged people to think of variety usages. For example, large quarries can still be seen in the area to the present. Limestone gravel was and still is exploited here for building purposes as well as limestone as a raw material for the cement industry. As the long-distance transport of limestone would have been too expensive, large cement works are usually located near quarries, for example in Allendingen, Dotternhausen and Schelklingen. The quarries are admittedly an intrusion in the natural landscape, but after a while they are an important habitat for peregrine falcons, eagle owls and other rare animals and some of them have therefore even become protected nature reserves.

Due to the shallow soils, the limestones of the Alb are visible on the surface in almost every bank of a path or can be found collected together in large clearance cairns or in walls at the edge of fields.

The Mössingen landslide is an imposing warning for the erosion of the Alb escarpment and the movement of the Swabian Alb. In April 1983, 4 million cubic metres of earth and rocks started to move in less than a few hours. In the nature reserve today, you can see how a totally destroyed landscape has been recaptured by the flora and fauna.

The former reefs of the Jurassic Sea can now be seen as crests on the Alb plateaus or etched out as rocky stacks, the most beautiful of which can be seen in the wildly romantic canyon of the Danube river cutting through the Swabian Jurassic between Früdingen and Sigmaringen. These protruding rocky outcrops were used by humans in former times. Hardly anywhere else you can find so many castles concentrated as on the Swabian Alb. For example: Hohenzollern, Teck, Neuffen, on outliers in front of the escarpment; and 20 castles alone in the Lauter valley over a stretch of just 25 kilometres.

“The water-soluble and “water-swallowing” limestone of the Alb is not just a geological phenomenon but also forces humans, animals and plants to make special adjustments. The Alb is famous for its bright colourful meadows, known as limestone grasslands, with numerous orchids and carline thistles. The extensive juniper heaths, virtually typical of the „original“ Alb, would not normally occur here. They have been laid out, as it were, by man. Flocks of sheep prevented the growth of deciduous trees which otherwise would have formed a sparse beech forest here. The prickly juniper which no sheep would want to bite, although hungry, was the only plant that remained.

There were a lot of stones and not much bread,” this is how the Härtsfeld plateau near Neresheim was used to be described and an observer today may well still ask how crops could grow between the stones which are almost completely covering the fields.

The water-soluble and „water-swallowing“ limestone of the Alb is not just a geological phenomenon but also forces humans, animals and plants to make special adjustments. The Alb is famous for its bright colourful meadows, known as limestone grasslands, with numerous orchids and carline thistles. The extensive juniper heaths, virtually typical of the „original“ Alb, would not normally occur here. They have been laid out, as it were, by man. Flocks of sheep prevented the growth of deciduous trees which otherwise would have formed a sparse beech forest here. The prickly juniper which no sheep would want to bite, although hungry, was the only plant that remained.

Due to the shallow soils, the limestones of the Alb are visible on the surface in almost every bank of a path or can be found collected together in large clearance cairns or in walls at the edge of fields.

The Mössingen landslide is an imposing warning for the erosion of the Alb escarpment and the movement of the Swabian Alb. In April 1983, 4 million cubic metres of earth and rocks started to move in less than a few hours. In the nature reserve today, you can see how a totally destroyed landscape has been recaptured by the flora and fauna.

The former reefs of the Jurassic Sea can now be seen as crests on the Alb plateaus or etched out as rocky stacks, the most beautiful of which can be seen in the wildly romantic canyon of the Danube river cutting through the Swabian Jurassic between Früdingen and Sigmaringen. These protruding rocky outcrops were used by humans in former times. Hardly anywhere else you can find so many castles concentrated as on the Swabian Alb. For example: Hohenzollern, Teck, Neuffen, on outliers in front of the escarpment; and 20 castles alone in the Lauter valley over a stretch of just 25 kilometres.

As there were so many limestone outcrops, this understandably encouraged people to think of variety usages. For example, large quarries can still be seen in the area to the present. Limestone gravel was and still is exploited here for building purposes as well as limestone as a raw material for the cement industry. As the long-distance transport of limestone would have been too expensive, large cement works are usually located near quarries, for example in Allendingen, Dotternhausen and Schelklingen. The quarries are admittedly an intrusion in the natural landscape, but after a while they are an important habitat for peregrine falcons, eagle owls and other rare animals and some of them have therefore even become protected nature reserves.

Due to the shallow soils, the limestones of the Alb are visible on the surface in almost every bank of a path or can be found collected together in large clearance cairns or in walls at the edge of fields.

The Mössingen landslide is an imposing warning for the erosion of the Alb escarpment and the movement of the Swabian Alb. In April 1983, 4 million cubic metres of earth and rocks started to move in less than a few hours. In the nature reserve today, you can see how a totally destroyed landscape has been recaptured by the flora and fauna.

The former reefs of the Jurassic Sea can now be seen as crests on the Alb plateaus or etched out as rocky stacks, the most beautiful of which can be seen in the wildly romantic canyon of the Danube river cutting through the Swabian Jurassic between Früdingen and Sigmaringen. These protruding rocky outcrops were used by humans in former times. Hardly anywhere else you can find so many castles concentrated as on the Swabian Alb. For example: Hohenzollern, Teck, Neuffen, on outliers in front of the escarpment; and 20 castles alone in the Lauter valley over a stretch of just 25 kilometres.

As there were so many limestone outcrops, this understandably encouraged people to think of variety usages. For example, large quarries can still be seen in the area to the present. Limestone gravel was and still is exploited here for building purposes as well as limestone as a raw material for the cement industry. As the long-distance transport of limestone would have been too expensive, large cement works are usually located near quarries, for example in Allendingen, Dotternhausen and Schelklingen. The quarries are admittedly an intrusion in the natural landscape, but after a while they are an important habitat for peregrine falcons, eagle owls and other rare animals and some of them have therefore even become protected nature reserves.

Due to the shallow soils, the limestones of the Alb are visible on the surface in almost every bank of a path or can be found collected together in large clearance cairns or in walls at the edge of fields.
The Swabian volcano

In the Tertiary, between 18 and 10 million years ago, many volcanoes erupted on the Swabian Alb and some of these can still be seen in the present landscape. The basaltic magma rose up through the fissured earth crust and tore away pieces of rock from the bedrock and the overlying Triassic and Jurassic layers. When it came into contact with the groundwater in the White Jurassic, there were immense steam explosions which blasted away the overlying rock layers. In this way, big calderas were formed which later filled with water and became freshwater lakes on the plateau of the Swabian Alb. The most famous of these former freshwater lakes is the Randecker Maar, a volcanic crater now located directly along the Alb escarpment. It left behind finely laminated limestones with beautifully preserved fossils: flowers and leaves of subtropical plants, insects, frogs and salamanders, and even the remains of mammals.

In the Alb foreland, the volcanic diatremes appear as cone-shaped mountains. For example the Limburg, the Turmberg, the Sulzburg near Oberlenningen, the Spitzberg and Engellberg near Beuren, the Georgenberg near Reutlingen, the Metzingen Weinberg and the Grafenberg and several others, all have a core of volcanic origin. The volcanic rock filling of these hills is more resistant to weathering than the surrounding layers of the Brown Jurassic and so they stand out as flat cones on the foreland of the Swabian Alb. When humans settled on the Swabian Alb, the volcanic diatremes were particularly important for them as this is the place where they found water. The groundwater accumulated on the water-impermeable volcanic tuffs and did not drain away as quickly as it is usually the case on the karstified Alb plateau. The thermal springs and mineral springs containing carbonic acid in Bad Imnau, Bad Überkingen, Bad Ditzenbach, Bad Boll, Bad Urach, Beuren and Aalen are probably the last consequences of the volcanic activity during the Tertiary.

A greeting from outer space leaves its mark

It only lasted a few minutes and happened 15 million years ago – a natural catastrophe of immense proportions that destroyed all life within a wide radius. Two meteorites struck the ground at a speed of about 25 km per second, only about 40 km away from the plateau of the Swabian Alb. The impact of the larger meteorite led to the formation of the famous Nördlinger Ries. The smaller meteorite had a diameter of about 80 m and left behind a circular crater of 3.5 km diameter in the area of today’s municipality of Steinheim am Albuch. On impact, pressures of over 100,000 atm. and a temperature of some 10,000°C were generated. Consequently the meteorite and the surrounding rock evaporated on impact giving rise to a crater of around 250 metres in depth.

The impact caused shock waves to be released, the crater was blasted out and a huge amount of debris was expelled. Similar to a drop of water landing on the water surface, a peripheral rim was created and as a consequence of the rebound, the clearly visible cone of the central hill emerged which can be seen today. The rock was crushed and melted within seconds – from the hard White Jurassic layer on the surface deep down to the bedrock in the interior of the Earth. Rock ejecta, for example of White Jurassic limestones, were hurled for kilometres through the air and then inclined, compressed and folded on impact. Finally, a freshwater lake formed in the explosion crater, where then new life quickly evolved. The outcrops of sand in the Steinheim Basin with their freshwater snails are particularly famous, but fossil fish, turtles and mammals were also found there.

PALAEOZOIC
BUNTER 251 - 243 m
MUSCHELKALK 243 - 235 m
KEUPER 235 - 200 m
BLACK JURASSIC 200 - 178 m
BROWN JURASSIC 178 - 156 m
WHITE JURASSIC 156 - 142 m
CRETACEOUS 142 - 65 m
TERTIARY 65 - 2,6 m
QUATERNARY 2,6 m - Today
Quaternary Period - Ice Age hunters and early artists

Breathing heavily, the Ice Age hunters made their way home. Still, it had all been worthwhile – they were returning with quite a quarry. They carried pieces of several mammoths with them. Just imagine the delight of the tribal members they had left behind. They gave their hunters a rapturous welcome. This scene could have taken place in the Swabian Alb area about 30,000 years ago, that is in the middle of the last Ice Age.

For more than 2 million years, that is since the beginning of the Quaternary Period, ice ages had alternated with warm periods at almost regular intervals. A new creature had appeared on the Alb who we would hear a lot more about: man. A number of things left behind by man during the last Ice Age have been found in recent times and continue to be found today on the Alb. The caves in the Alb region represent a unique archive of history of civilization. World-famous discoveries were made in the caves of the Ach and Lone valleys – the oldest artworks created by man. The early Stone Age people created figures and instruments from mammoth ivory and animal bones. In fact, they even played tunes on the carved flutes!

The most sensational finds and oldest artworks are the nearly 40,000 year-old Venus from Hohle Fels in the Ach valley, the legendary lion man from the Hohlenstein in Lone valley or the little horse, the mammoth and many other small figures from the caves in the Ach and Lone valleys. There are also some old tools and remains of hunting quarry which bear witness to how people used to live on the Alb. You can get a real feeling of what life was like for the people of the Alb at this time if you visit the Prehistoric Museum Blaubeuren or the Archeopark Vogelherd or the Hohle Fels cave near Schelklingen.

The landscape and the plants and animals were completely different from those of the present: a seemingly endless tundra landscape extended almost as far as the horizon. Hard to imagine that a lot of water used to flow through the now „dry valleys“, because the Alb streams could not drain into the karstic bedrock due to the permanently frozen ground. Only masters of survival such as lichens and grasses and dwarfish bushes and trees survived the ice-cold winter. In a few exceptional locations on the Alb, some of these types of plants were able to survive thousands of years until today. Some animals that have become extinct long ago while others are still around today used to live on the Alb, such as mammoths, woolly rhinos, bisons, wild horses and reindeers, and all of them were hunted intensively by man. At Petersfels near Engen, animal bones were found which suggested that thousands of reindeers had been hunted and slaughtered in a narrow section of the valley! And maybe it was the Neanderthal man that drove the Alb marmot to extinction all those years ago. Stone Age man may have come across one of the powerful cave bears as Weinland explains so well in his novel „Rulaman“. In the Bärenhöhle near Erpfingen, bones of hundreds of giant cave bears were discovered.

For more than 2 million years, that is since the beginning of the Quaternary Period, ice ages had alternated with warm periods at almost regular intervals. A new creature had appeared on the Alb who we would hear a lot more about: man. A number of things left behind by man during the last Ice Age have been found in recent times and continue to be found today on the Alb. The caves in the Alb region represent a unique archive of history of civilization.

World-famous discoveries were made in the caves of the Ach and Lone valleys – the oldest artworks created by man. The early Stone Age people created figures and instruments from mammoth ivory and animal bones. In fact, they even played tunes on the carved flutes!

The landscape and the plants and animals were completely different from those of the present: a seemingly endless tundra landscape extended almost as far as the horizon. Hard to imagine that a lot of water used to flow through the now „dry valleys“, because the Alb streams could not drain into the karstic bedrock due to the permanently frozen ground. Only masters of survival such as lichens and grasses and dwarfish bushes and trees survived the ice-cold winter. In a few exceptional locations on the Alb, some of these types of plants were able to survive thousands of years until today. Some animals that have become extinct long ago while others are still around today used to live on the Alb, such as mammoths, woolly rhinos, bisons, wild horses and reindeers, and all of them were hunted intensively by man. At Petersfels near Engen, animal bones were found which suggested that thousands of reindeers had been hunted and slaughtered in a narrow section of the valley! And maybe it was the Neanderthal man that drove the Alb marmot to extinction all those years ago. Stone Age man may have come across one of the powerful cave bears as Weinland explains so well in his novel „Rulaman“. In the Bärenhöhle near Erpfingen, bones of hundreds of giant cave bears were discovered.
Karst formation - where rocks and water disappear

A fabulous underworld
As a result of the dissolution of limestone inside the Swabian Alb, extensive and impressive cave systems were formed over millions of years. These are often adorned with rich stalactite and stalagmite formations. Because when the water containing calcium carbonate drips down from the cave ceiling, the calcium carbonate is precipitated again. Thin stalactites gradually grow down from the cave ceilings. When the water drop lands on the ground, stalagmites start to grow upwards over thousands of years until they both meet in the middle and form a column.

When it rains on the Swabian Alb, the rainwater dissolves the limestones. Cracks in the mountains are then widened to become passages and shafts. Finally, these processes led to the development of large cave systems within the rock. The water does not stay in the bedrock for long but quickly drains away via aquifers or even underground rivers. Since the end of the Tertiary, a barren karst landscape evolved – the Swabian Alb.

Water plunges down - and re-emerges
The extensive underground cavities of the Alb are famous for the large number of show caves and notorious for the dolines, fairly small sink holes which in extreme cases may suddenly cave in when a tractor passes over them. And finally there is another phenomenon to mention concerning the “hollowed out” Alb – despite a fairly high level of precipitation, the Swabian Alb is the most arid landscape in Germany. Before the Alb water supply system was put in place, many inhabitants of the Alb were dependant on rainwater collected in tanks and ponds, and during a summer drought, water sometimes had to be transported in barrels from far away over the plateau for months. At the same time, the Alb has the most productive springs in Germany, with the Aach spring and the Blautopf. During flooding, the Aachtopf fills up at a rate of up to 24,800 litres per second and the Blautopf at up to 32,000 litres per second. This can be explained by the water draining away into the hollowed-out underground. What is particularly impressive is the sudden disappearance of the entire water of the Danube near Immendingen, the so-called Danube seepage. The water of the Danube resurfaces in the Aachtopf spring about twelve kilometres away.

Rocks formed from water
The opposite of what happens in cave formation is also possible and rock can be formed from water. Dripstone forms in the caves and tufa forms on the earth’s surface. The calcium carbonate in karst springs, which mostly rise in the deeply carved valleys at the edge of the Swabian Alb, is mainly precipitated on mosses and algae. Although the plants become increasingly “petrified” from below, they can continue growing upwards so that several metres of thick tufa deposit can develop. This highly porous limestone is quite striking on a number of older buildings. It can easily be cut with a wet circular saw and has a strong insulating effect – it is therefore no surprise that it used to be a popular building stone.

Some of the most beautiful caves in the Swabian Alb have been turned into show caves. They include for example the Bärenhöhle, Charlottenhöhle, Wimsener Höhle, the Nebelhöhle, the Schenkerhöhle, Schertelshöhle, Kolbinger Höhle and the Laichinger Tiefenhöhle: the latter is the deepest accessible show cave in Germany.

River valleys without rivers
There are impressive river valleys all over the Alb plateau but the rivers you expect to see are nowhere to be found. Where are the rivers buried by these valleys? These valleys were formed during the Tertiary and the Ice Age. At that time, large rivers surged over the Alb until they disappeared into the extensive systems of caves and crevices that developed as a result of the karstification. Water flows along mysterious channels for kilometres in the “subterranean streams”. It was only when experiments were carried out with coloured water and diving expeditions were made through caves that some of these channels could be detected and retraced. The water normally accumulates in two karst levels. The water in the lower level flows towards the River Neckar while the water from the higher level mainly ends up in the Danube. Both karst water reservoirs are extremely important for the supply of drinking water in the Swabian Alb which is intrinsically a very arid area due to karst formation.

Some of the most beautiful caves in the Swabian Alb have been turned into show caves.
Seit der Eiszeit unberührt – das schmeckt man!

EiszeitQuell-Steckbrief:

<table>
<thead>
<tr>
<th>Mineralstoff</th>
<th>EiszeitQuell (Menge in mg/l)</th>
<th>Gesetzliche Obergrenze für Babynahrung (in mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>135,0</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td>35,0</td>
<td>-</td>
</tr>
<tr>
<td>Kieselkies</td>
<td>14,8</td>
<td>-</td>
</tr>
<tr>
<td>Kalium</td>
<td>3,8</td>
<td>-</td>
</tr>
<tr>
<td>Natrium</td>
<td>6,9</td>
<td>20,0</td>
</tr>
<tr>
<td>Kalzium</td>
<td>0,6</td>
<td>0,7</td>
</tr>
<tr>
<td>Chlorid</td>
<td>3,2</td>
<td>-</td>
</tr>
<tr>
<td>Sulfat</td>
<td>200,0</td>
<td>240,0</td>
</tr>
<tr>
<td>Hydrogen-carbonat</td>
<td>354,0</td>
<td>-</td>
</tr>
<tr>
<td>Fluorid</td>
<td>nicht nachweisbar</td>
<td>0,02</td>
</tr>
<tr>
<td>Nitrat</td>
<td>nicht nachweisbar</td>
<td>10,0</td>
</tr>
<tr>
<td>Nitrit</td>
<td>nicht nachweisbar</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Besondere Qualitätsmerkmale von EiszeitQuell:

- Keuper (Wasserundurchlässige Gesteinslage)
- Keuper (Wasserundurchlässige Gesteinslage)

Wasser mit Umwelteinflüssen

Keuper (Wasserundurchlässige Gesteinslage)

EiszeitQuell-Steckbrief:

<table>
<thead>
<tr>
<th>Mineralstoff</th>
<th>EiszeitQuell (Menge in mg/l)</th>
<th>Gesetzliche Obergrenze für Babynahrung (in mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>135,0</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td>35,0</td>
<td>-</td>
</tr>
<tr>
<td>Kieselkies</td>
<td>14,8</td>
<td>-</td>
</tr>
<tr>
<td>Kalium</td>
<td>3,8</td>
<td>-</td>
</tr>
<tr>
<td>Natrium</td>
<td>6,9</td>
<td>20,0</td>
</tr>
<tr>
<td>Kalzium</td>
<td>0,6</td>
<td>0,7</td>
</tr>
<tr>
<td>Chlorid</td>
<td>3,2</td>
<td>-</td>
</tr>
<tr>
<td>Sulfat</td>
<td>200,0</td>
<td>240,0</td>
</tr>
<tr>
<td>Hydrogen-carbonat</td>
<td>354,0</td>
<td>-</td>
</tr>
<tr>
<td>Fluorid</td>
<td>nicht nachweisbar</td>
<td>0,02</td>
</tr>
<tr>
<td>Nitrat</td>
<td>nicht nachweisbar</td>
<td>10,0</td>
</tr>
<tr>
<td>Nitrit</td>
<td>nicht nachweisbar</td>
<td>0,02</td>
</tr>
<tr>
<td>Uran</td>
<td>nicht nachweisbar</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Besondere Qualitätsmerkmale von EiszeitQuell:

- Keuper (Wasserundurchlässige Gesteinslage)
- Keuper (Wasserundurchlässige Gesteinslage)

Warum das Mineralwasser aus der Eiszeit so wertvoll ist...

Darum ist EiszeitQuell heute noch genau so rein wie vor über 10.000 Jahren: Nitrat, Nitrit und sämtliche Schadstoffe unserer modernen Zeit (z.B. Hormone oder Pestizide) sind darin nicht nachweisbar. Es ist ausgewogen mineralisiert, natrium- und kochsalzarm und für Babynahrung bestens geeignet.
The Laichingen Pothole (Laichinger Tiefenhöhle)

The Laichingen pothole is the deepest show cave in Germany. The tourist route descends to a depth of 55 m. Vast chambers and huge passageways captivate visitors during their tour of the cave.

In the visitor’s centre above the cave entrance, there is a Museum of Speleology providing interesting information on the mysterious subterranean world of caves.

Opening hours cave and museum
Palm Sunday until end of autumn holidays, daily 9 - 18 Uhr

Informations:
Höhlen- und Heimatverein Laichingen
Phone: 07333 - 5586
Anmelden@tiefenhoehle.de
www.tiefenhoehle.de
Fossil Museum opening hours:
Tuesday to Thursday: 1.00 p.m. until 5.00 p.m.
Sunday and holiday: 11.00 a.m. until 5.00 p.m.
The museum is closed from December 1st until January 6th.

Entrance is free.

The Fossil Museum is one of 18 info stations of the Geopark Swabian Alb.

witnesses of earth history - treasure chest for young and old - thrilling discoveries in the museum

A fascinating Journey into the Past —
Welcome to the Museum of Fossils

Holcim
WERKFORUM
Holcim (Süddeutschland) GmbH
Zementwerk Dotternhausen
72359 Dotternhausen

Phone + 49 (0) 74 27 79 - 211
www.holcim-sued.de
info-sueddeutschland@holcim.com